Elliptic complex numbers with dual multiplication
نویسندگان
چکیده
Investigated is a number system in which the square of a basis number: (w), and the square of its additive inverse: (−w), are not equal. Termed W space, a vector space over the reals, this number system will be introduced by restating defining relations for complex space C, then changing a defining conjugacy relation from conj(z) + z = 0 in the complexes to conj(z) + z = 1 for W space. This change produces a dual represented vector space consisting of two dual, isomorphic fields, which are unified under one “context-sensitive” multiplication. Fundamental algebraic and geometric properties will be investigated. W space can be interpreted as a generalization of the complexes but is characterized by an interacting duality which seems to produce two of everything: two representations, two multiplications, two norm values, and two solutions to a linear equation. W space will be compared to a previous suggestion of a similar algebra, and then possible applications will be offered, including a W space fractal.
منابع مشابه
Infinitude of Elliptic Carmichael Numbers
In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in...
متن کاملOn complex and noncommutative torus
To every non-singular elliptic curve (complex torus) we assign a C∗algebra Tθ = {u, v | vu = e uv} known as noncommutative torus. It is shown that morphisms of elliptic curves generate Morita equivalence of the corresponding noncommutative tori. Real number θ we call projective curvature attached to the elliptic curve. It is proved that projective curvatures of isomorphic elliptic curves are mo...
متن کاملAttractors and Arithmetic
We consider attractor varieties arising in the construction of dyonic black holes in CalabiYau compactifications of IIB string theory. We show that the attractor varieties are constructed from products of elliptic curves with complex multiplication for N = 4, 8 compactifications. The heterotic dual theories are related to rational conformal field theories. The emergence of curves with complex m...
متن کاملThe main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes
We develop the plus/minus p-Selmer group theory and plus/minus padic L-function theory for an elliptic curve E with complex multiplication over an abelian extension F of the imaginary quadratic field K given by the complex multiplication of E when p is a prime inert over K/Q (i.e. supersingular). As a result, we prove that the characteristic ideal of the Pontryagin dual of the plus/minus p-Selm...
متن کاملON THE REAL HODGE AND p-ADIC REALIZATIONS OF THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES
In this paper, we give an explicit description of the complex and p-adic polylogarithms for elliptic curves using the Kronecker theta function. We prove in particular that when the elliptic curve has complex multiplication and good reduction at p, then the specializations to torsion points of the p-adic elliptic polylogarithm are related to p-adic Eisenstein-Kronecker numbers, proving a p-adic ...
متن کاملON THE DE RHAM AND p-ADIC REALIZATIONS OF THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES
In this paper, we give an explicit description of the de Rham and p-adic polylogarithms for elliptic curves using the Kronecker theta function. We prove in particular that when the elliptic curve has complex multiplication and good reduction at p, then the specializations to torsion points of the p-adic elliptic polylogarithm are related to p-adic Eisenstein-Kronecker numbers, proving a p-adic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 216 شماره
صفحات -
تاریخ انتشار 2010